Hidden Fermi surfaces in compressible states of gauge-gravity duality
نویسندگان
چکیده
Abstract General scaling arguments, and the behavior of the thermal entropy density, are shown to lead to an infrared metric holographically representing a compressible state with hidden Fermi surfaces. This metric is characterized by a general dynamic critical exponent, z, and a specific hyperscaling violation exponent, ✓. The same metric exhibits a logarithmic violation of the area law of entanglement entropy, as shown recently by Ogawa et al. (arXiv:1111.1023). We study the dependence of the entanglement entropy on the shape of the entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions; for the latter computations, we realize the needed metric in an Einstein-Maxwell-dilaton theory. All our results support the proposal that the holographic theory describes a metallic state with hidden Fermi surfaces of fermions carrying gauge charges of deconfined gauge fields.
منابع مشابه
What can gauge-gravity duality teach us about condensed matter physics?
I discuss the impact of gauge-gravity duality on our understanding of two classes of systems: conformal quantum matter and compressible quantum matter. The first conformal class includes systems, such as the boson Hubbard model in two spatial dimensions, which display quantum critical points described by conformal field theories. Questions associated with non-zero temperature dynamics and trans...
متن کاملFermi surfaces and gauge-gravity duality
We give a unified overview of the zero temperature phases of compressible quantum matter: i.e. phases in which the expectation value of a globally conserved U(1) density, Q, varies smoothly as a function of parameters. Provided the global U(1) and translational symmetries are unbroken, such phases are expected to have Fermi surfaces, and the Luttinger theorem relates the volumes enclosed by the...
متن کاملA model of a Fermi liquid using gauge-gravity duality
We use gauge-gravity duality to model the crossover from a conformal critical point to a confining Fermi liquid, driven by a change in fermion density. The short-distance conformal physics is represented by an anti-de Sitter geometry, which terminates into a confining state along the emergent spatial direction. The Luttinger relation, relating the area enclosed by the Fermi surfaces to the ferm...
متن کاملCompressible Quantum Phases from Conformal Field Theories in 2+1 Dimensions
Abstract Conformal field theories (CFTs) with a globally conserved U(1) charge Q can be deformed into compressible phases by modifying their Hamiltonian, H, by a chemical potential H ! H μQ. We study 2+1 dimensional CFTs upon which an explicit S duality mapping can be performed. We find that this construction leads naturally to compressible phases which are superfluids, solids, or non-Fermi liq...
متن کاملThe quantum phases of matter
I present a selective survey of the phases of quantum matter with varieties of manyparticle quantum entanglement. I classify the phases as gapped, conformal, or compressible quantum matter. Gapped quantum matter is illustrated by a simple discussion of the Z2 spin liquid, and connections are made to topological field theories. I discuss how conformal matter is realized at quantum critical point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015